Deep Water Culture (DWC) is a hydroponic gardening method in which plants are grown directly into a large pool of nutrient solution. Typically, plants are placed in net baskets full of a growing medium such as perilite or expanded clay…
Deep Water Culture (DWC) is a hydroponic gardening method in which plants are grown directly into a large pool of nutrient solution. Typically, plants are placed in net baskets full of a growing medium such as perilite or expanded clay…
Continuous Flow or Nutrient Film Technique (NFT) hydroponic systems use a shallow stream (or film) of water recirculating through a channel to deliver nutrients directly to the plant roots. The stream is shallow enough that the uppermost roots laying in…
What is Hydroponics? Hydroponics is a method of growing plants without soil, using mineral nutrient solutions dissolved in water. Plants use light to turn water and carbon dioxide into the food they need, through a process called photosynthesis. As long…
ProtoModule is a HydroBot module designed to easily develop and test new monitoring or control functions that may someday go into a HydroBot module. It has 11 GPIO pins and the power rails broken out on a 0.1” pin header for easy breadboarding or…
HydroHub is a HydroBot module designed to connect together HydroBot modules in a star topology. The hub provides power and CAN connectivity to a total of eight channels. It has a DC barrel jack for connecting an external power supply, as…
RelayDrive is a HydroBot module designed to drive relays and other electro-mechanical devices. It consists of 4 low-side outputs, each rated for 1A continuous current, as well as 4 digital inputs, and is controlled over CAN. This module is intended to drive mechanical relays, solid state relays,…
AirSense is a HydroBot module designed to measure air temperature, relative humidity, and barometric pressure. It uses the Bosch BME280 atmospheric sensor to take measurements and sends the results out over CAN. The module can measure temperatures from 0 to +65°C…
HydroBot is a modular control system for automating hydroponic gardens. This system is designed with three objectives in mind. First, it will facilitate optimal growing techniques by using scheduling and feedback control loops to maintain state and adapt to changing conditions. Second, it will simplify controls…
When you’re trying to grow a bunch of plants in a field where a water source is lacking, things can be a bit tough. Hauling water on-site is a very arduous process, even with a tractor/trailer full of buckets. After…